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Abstract—This paper describes a model for calculation of 

magnetic instabilities in superconducting wires with transport 
current and reports results of instability simulations in Nb3Sn 
strands from different manufactures. The effect of magnetic 
instabilities on the strand and cable performance is presented 
and a criterion for the maximum effective sub-element size of 
strands for high field magnets is formulated. 

 
Index Terms—Superconducting accelerator magnets, 

superconducting filaments and wires, magnetic fields. 

The first rough estimation of the energy released during the 
flux jumps in the high-performance conductors was done 
based on the measured magnetization curve of MJR strand [3]. 
It revealed that the flux jumps in modern Nb3Sn strands 
release considerable amounts of energy (comparable to the 
minimum quench energy) at low fields that may cause a 
magnet quench. This analysis triggered a series of the short 
sample tests aimed at the assessment of the strand 
performance in the low field region. The first experimental 
results confirmed that the strand critical currents at low fields 
are indeed limited at 15÷20% of the expected values [4]. It 
stimulated the development of a detailed numerical model for 
the quantitative analysis of the magnetic instabilities in 
superconducting strands, cables and magnets. 

I. INTRODUCTION 

Several Nb3Sn shell-type dipole magnets and mirror models 
built at Fermilab using 1-mm MJR strand had quenches at 

~50÷60% of the expected critical current [1]-[2]. Different 
possible causes, including the splice heating, mechanical 
damage and some others, intended to explain the magnet 
performance were proposed, evaluated and rejected in the 
course of work due to inconsistency with the experimental 
data. The further experimental studies and thorough analysis 
performed on the magnets, including quench origin and 
quench propagation velocity, critical current and critical 
temperature measurements in the magnet coil, pointed on the 
instabilities in superconducting strands.  

II. MODEL DESCRIPTION AND RESULTS 
The general concept of the magnetic instabilities in 

superconductors is vastly described in literature. The 
criterions of adiabatic stability for a superconducting plate are 
formulated in [5]-[6]: 
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For the typical Nb3Sn MJR strand parameters Jc = 
18000A/mm2, γC = 1.7mJ/cm3K, Tc = 17.5K and –Jc/(∂Jc/∂T) 
= 16.5K at 1T background field and the bath temperature T0 = 
4.2K, the above criteria limit the maximum filament sizes to 
28µm and 24µm correspondingly. Nevertheless, some Nb3Sn 
magnets made of strands with the effective sub-element sizes 
in excess of 50÷100µm, reached their short sample limits in 
the close to adiabatic conditions [7]-[9].  

It is well known that the performance of superconducting 
wires, cables and magnets can suffer from magnetic 
instabilities associated with rapid motion of magnetic flux 
trapped inside the filaments. These instabilities or flux jumps 
depend mainly on the critical current density of 
superconductor, effective filament size, specific heat, and 
cooling conditions.  

It is obvious, that the simple differential criterions of 
adiabatic stability in the vicinity of T0 need improvements to 
adequately describe the maximum effective filament size for 
the Nb3Sn magnets and to explain different quench 
performances of magnets made from similar conductors. Thus, 
further efforts were undertaken for the analysis of the stability 
issues in the modern Nb3Sn superconducting strands.  

Decades ago, the stability issue was addressed for NbTi and 
Nb3Sn wires by reducing their effective filament diameter to 
3÷10 microns. However, the new generation of Nb3Sn wires 
produced for application in high field accelerator magnets 
have higher critical current densities (2÷3 kA/mm2 at 12T and 
4.2K) and relatively large, due to technological and 
economical reasons, effective sub-element sizes (50÷300 µm) 
that makes them potentially unstable. A. Assumptions and simplifications 

The analysis is based on the critical state model [10] with 
the critical current density as a function of the background 
field only. The temperature was assumed to be uniform within 
a strand that is the case for the magnetic diffusivity being 
larger than the thermal diffusivity. This simplification imposes 
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. certain restrictions on the model applicability. It was also 
assumed that heat generated in superconductor increases its 
internal energy without changes in the volume and pressure. 
For simplicity, the round filaments were approximated with 
squares of the same area. The problem was solved for a plate 
using the following one-dimensional set of constrains: Ix = Iy = 
0, Iz ≠ 0; Bx = Bz = 0, By ≠ 0; Ex = Ey = 0, Ez ≠ 0. 

For the one-dimensional problem constrains, it can be 
written in the following form: 

( ) ( )dxxTBxTTBdtTTExTTE yyzz ),(),()0,,(),,( 0000 −∆+−=∆+∆ . 

Integration of this equation over x coordinate yields the 
time integral of the electric field: 

B. Current and magnetic field profiles inside a SC filament ( ) )0,,(),(),(),,( 0
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There are three components of the magnetic field inside a 

filament: the background field, the field from the persistent 
currents induced during the background field change and the 
field from the transport current. Fig. 1 gives examples of the 
normalized current density and magnetic field profiles inside a 
100µm SC filament for different background fields and 
transport currents, computed by the Ampere’s law. The 
critical current density in the filament was parameterized 
according to [11] with an additional self-field correction to 
provide the best fit for the critical current derived from the 
magnetization measured on MJR strands [12]. Depending on 
the background field, transport current and flux penetration 
history, there can be different current and field profiles inside 
a filament.  

Fig. 2 (right) gives an example of the electric field integral 
inside a filament due to the magnetic flux variation shown in 
Fig. 2 (left) caused by the temperature rise.   
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 Since the critical current density in superconductor depends 
on the temperature - the current and field distributions inside a 
filament are also functions of the temperature. Fig. 2 (left) 
gives examples of the magnetic field profiles inside the 
filament for different temperature variations ∆T over T0. 

Figure 2. Magnetic flux density and electric field integral for the background 
field of 1T and the transport current of 50A. 

Calculation of the energy released in a filament due to 
magnetic flux change can be performed by several ways [5]-
[6]. We have chosen the approach based on the Poynting 
vector HES

rrr
×= . The total power of the electromagnetic 

energy flow through the surface surrounding a closed volume 
equals to the volume integral of the sum of the resistive loss 
power and time derivatives of the energies stored in the 
electric and magnetic fields inside that volume: 
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Integrating both parts of this equation over time and for the 
one-dimensional problem yields: 

( )dvWWQdsHE
Volume

me
Surface

yz ∫∫ ∆+∆+∆=* , 

where ∆Q is the increment of the heat dissipations and ∆We  
∆Wm are the increments of the energies stored in the electric 
and magnetic fields inside the volume.  

The value of the energy stored in the electric field is much 
smaller than the one stored in the magnetic field for any 
reasonable parameter variations in the given problem and is 
neglected. Averaging the heat dissipation and stored energy 
over the filament cross-section yields the following simple 
expression for the heat dissipation: 

 Figure 1. Normalized current density and magnetic flux density for the 
background fields of 0.5 T (top) and 1.5 T (bottom). 
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1 . C. Heat generation during a flux change  

A temperature variation inside superconducting filament 
results in the magnetic flux change. According to the 
Faraday’s law, variation of the magnetic flux generates the 
electric field: 

This formula allows analytical calculation of the energy 
released in a filament based on the initial and final states of 
the current and magnetic field independently of time. 
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E. Instabilities in a strand with the transport current D. Instabilities in a strand without the transport current 
Presence of the transport current in a strand violates the 

flux symmetry with respect to the filament center that results 
in larger electric field, as shown in Fig. 1-2. Also, it limits the 
equilibrium temperature by the strand critical temperature at a 
given field and current, after which the resistive heat 
generation takes place. Fig. 4 presents the heat dissipation and 
internal energy in the 1-mm MJR strand with the transport 
current.  

The increment of the internal energy ∆U associated with the 
∆T is determined by: 

∫
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The total specific heat of a strand Cp is calculated as a sum 
of the specific heats of Nb3Sn and Cu (in the stabilizer and 
matrix) averaged over the strand area. The specific heats of 
the Nb3Sn and Cu were taken from [13]-[14] as volumetric 
functions of the temperature and (in case of the Nb3Sn) the 
field.  

The abrupt drop to zero in the heat generation curves 
denotes the critical temperature with an increment ∆Tc. 
According to the theories of the flux jump initiation in 
superconducting wires [15]-[16], there is always a probability 
of a flux jump that will follow the curves shown. 

Fig. 3 shows the heat dissipations due to the magnetic flux 
motion and the corresponding internal energies in the 1-mm 
MJR (Deff = 110µm) and PIT strands (Deff  = 53µm) with the 
parameters given in [12] as functions of the temperature 
increment ∆T.  
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Figure 4. Heat dissipation and internal energy in MJR strand for different 
transport currents at 1T background field.   

Obviously, if ∆Tc<∆Te for a given background field and 
transport current, the flux jump will bring the conductor above 
the critical surface. Then the criterion of strand adiabatic 
stability can be written as: 

Figure 3. Heat dissipation and internal energy in 1-mm MJR (left) and PIT 
(right) strands for different background fields at I = 0. Note: variation of ∆U 
under the background field change is not shown due to its small effect. 

As it follows from Fig. 3, the heat dissipation grows up 
with the background magnetic field until it reaches the 
maximum at the field close to the full penetration field for 
given conductor and then reduces with further increase of the 
field.  

)),,(,,()),,(,,,( 0000 TIBTTBUTIBTTIBQ cc ∆∆<∆∆ , 
and the maximum transport current strand can carry without 
the resistive transition Irt should satisfy the following 
equation: 

)),,(,,()),,(,,,( 0000 TIBTTBUTIBTTIBQ rtcrtcc ∆∆=∆∆ . At some value of the background field, ∆Q overcomes ∆U 
in the vicinity of T0. When it happens, a small temperature 
perturbation causes the flux motion that releases amount of 
heat exceeding the one that can be contained in the form of the 
internal energy, therefore the temperature-energy rise 
avalanche will continue until the amount of heat dissipated 
equals the internal energy: 

Instabilities in a strand with the transport current limit the 
maximum value of current strand can carry at given external 
conditions. Fig. 5 (left) shows the current of the resistive 
transition calculated for the 1-mm MJR strand as functions of 
the background magnetic field.  
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where ∆Te is the temperature increment of the equilibrium.  
Based on the data in Fig. 3, the field region corresponding 

to the unstable conditions for the MJR strand is 0.7÷3T and 
for the PIT strand is 0.5÷1.5T.  

Magnetic instabilities in strands without the transport 
current are observed during the magnetization measurements. 
The calculated above field ranges, where instabilities occur, 
are in a good agreement with the regions of the flux jumps 
observed in the measured magnetization curves for the 
relevant strands [12]. It serves as the model verification 
without the transport current.  

Figure 5. Current of the resistive transition and critical current of the 1-mm 
MJR strand in cable (left) and normalized maximum transport current for 
different cabled strands (right) calculated in adiabatic conditions. 

The line for Deff = 0 represents the critical current Ic(B) 
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strand would carry without instabilities. Based on 
observations of the sub-element deformation after the cabling 
[17], the average effective sub-element size is 170µm for the 
cabled strands with respect to 110µm for the round ones.  
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One can see that due to the instabilities, strand can carry 
only a fraction of the critical current, especially at low fields, 
where is a local minimum on Irt(B) curve at ~1.5T. The critical 
current at higher fields is not dramatically degraded that may 
seem acceptable for a high field magnet, however due to the 
magnetic flux return through the coil, virtually any accelerator 
magnet of either shell or block type has a region with wires 
exposed to the low fields. Therefore, the low-field minimum 
on the critical current curve defines the actual quench current 
that according to Fig. 5 (left) is 439A per strand or 12.3 kA 
for a 28-strand cable.  

Figure 6. Effective sub-element diameter as a function of the critical current 
density for different projected fields in a coil for the round strand (left) and 
deformed with 1.55 ratio, corresponding to the Rutherford type cable (right). 

CONCLUSION 
An adiabatic model for simulation of magnetic instabilities 

in Nb3Sn strands and cables has been developed. The model 
predicted significant reduction of the current carrying 
capability in the state of the art Nb3Sn strands and cables with 
large Deff and high Jc at low fields.  

This number is in the middle of the quench current band 
achieved in the Fermilab shell type dipoles using the 28-strand 
cable [1]-[2]. There is also a good correlation of this current 
with the measurements performed on impregnated cable 
samples [18-19].  It has led to a quantitative explanation of the premature 

quenches in some Nb3Sn magnets based on MJR conductor 
tested at Fermilab and elsewhere. It has also justified using of 
the more stable PIT conductor, which resulted in reaching the 
short sample limits in several Nb3Sn magnets recently 
fabricated and tested at Fermilab  [20].  

F. Effects of the Deff and Jc 
Fig. 5 (right) shows the Irt(B) for 0.7-mm and 1-mm MJR 

and 1-mm PIT strands with different effective sub-element 
sizes and the deformation ratio of sub-elements 1.55, 
normalized to the strands Ic(B) as functions of the magnetic 
field. Reduction of the MJR strand diameter from 1-mm to 
0.7-mm corresponding to the reduction of Deff from 170µm to 
119µm increases stability at low fields by more than a factor 
of two. Due to even smaller Deff, the 1-mm PIT strand is a 
factor of five more stable than 1-mm MJR strand at low fields.  

The criterions for marginally stable strands were developed 
that can be used in magnet designs and in conductor 
development programs.   
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